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LETTER TO THE EDITOR 

The exact solution of a non-planar Ising model 

R G Bowers 
Department of Applied Mathematics and Theoretical Physics, University of Liverpool, 
PO Box 147, Liverpool L69 3BX, UK 

Received 27 June 1983 

AbstrPct. A generalisation of the star-triangle transformation is used to establish a 
correspondence between a non-planar Ising lattice with two interaction constants and the 
standard triangular Ising model. The critical point of the non-planar lattice is obtained 
exactly for various values of the ratio of the interaction constants. The singularity in the 
zero-field free energy of the non-planar lattice is investigated. It is shown to be of the 
same form as that displayed by the corresponding standard Ising model. 

The problems encountered and progress made in the solution of non-planar Ising 
models are well known (Green and Hurst 1964, Temperley 1972, Baxter 1982). In 
this article, a generalisation of the star-triangle transformation (Onsager 1944, Wan- 
nier 1945, Fisher 1959)-which will be called the K(3,3)-K(3) transformation-is 
used to solve the Ising lattice of figure 1. The notation here is that standard in graph 
theory (Essam and Fisher 1970). Thus K(3,3) is the complete bichromatic graph 
shown in figure 2 (there is, of course, no vertex at the centroid here) whilst K(3) is 
the complete graph on three vertices (the triangle). The non-planarity of the lattice 
in figure 1 follows directly from the non-planarity of K(3,3) (Essam and Fisher 1970). 

The (zero-field) partition function associated with the graph K(3,3)  in figure 2 is 
a sum of terms of the form 

exp[Kl((Tlg4 +(T4(T2 + ( T Z U 5  + g5U3 + (+3(T6 + (Tg(T1) + KZ((Tl(T5 + (Tzu6 + (T3(T4)], (1) 
where K1= PJ1, K2 = PJz and the notation is standard. The interaction constants J1 
and J2 correspond respectively to first and second neighbour interactions. If one sums 

Figure 1. A non-planar lattice 
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Figure 2. The K ( 3 ,  3)-K(3)  transformation. 

(1) over all values of u4, vs and u 6 ,  the result can be written in the form 

8 COSh[(u1 +gZ)K1 +(T~Kz] cosh[(oz + ~ 3 ) K i  +g1Kz] cosh[(c+3 + ~ i ) K i  +(J&z]. (2) 

For given K1 and K2, the expression (2) has only two distinct values for u1 = ztl, 
uz = *l,  and u3 = k l .  These are 

8 cosh3(2K1 + K 2 )  (for u1 = u 2  = u3), 

8 cosh(2K1 -K2) cosh’ KZ (otherwise). (3) 

The (zero-field) partition function of the triangle in figure 2-augmented by a 
factor A-is a sum of terms of the form 

A exp[K,(um +-2C3 + u~ud1, (4) 
where the notation is again standard. For given A and K,, the expression (4) again 
has only two distinct values for u1 = *l, cr2 = *l, and u 3  = * l .  These are 

A exp(3KJ (for ul = uz = u3), A exp(-Kt) (otherwise). ( 5 )  

The compatibility between (3) and (5) allows one to identify (2) and (4) for all 

(6) 

spin states provided that K1, K 2  and A, K,  satisfy 

A exp(3K,) = 8 cosh3 (2K1 +K2), A exp(-K,) = 8 cosh(2K1 -Kz) cosh’ Kz. 
These equations may be solved for A and K ,  in terms of K1 and K 2 .  This gives 

Kt  = ln{cosh3(2K1 +K2)/[cosh(2K1 - K 2 )  cosh’ K 2 ] } ,  (7) 
A =  8 C O S ~ ~ / * ( ~ K I  +Kz) ~ o s h ~ ’ ~ ( 2 K i  -Kz) cosh3/’ Kz.  

These results (or equivalently those of (6)) are the basic equations of the K(3 ,3 ) -K(3 )  
transformation. 

Suppose that the lattice in figure 1 has 4N sites and that the interaction constants 
J1 and J2-ascribed in the obvious way-are each uniform in value over the entire 
lattice. The partition function of the lattice can then be written Z4N(K1, K 2 ) .  This 
object is a sum over all spin states of a product of terms of the form (l)--one for 
each of the embeddings of K ( 3 , 3 )  made appropriate by figure 1. The spins on all 
the lattice sites equivalent to the sites 4, 5 and 6 in figure 2 may be summed over, 
thus reducing each of the above terms to the form (2). By imposing equations (7),  
one may then rewrite each of these terms in the form (4). It then remains to sum 
over the spins on all the lattice sites equivalent to the sites 1, 2 and 3 in figure 2. 
These constitute a triangular Ising lattice of N sites and interaction parameter K,. Thus 

ZIN(KI, Kz) = ANZh(Kt). (8) 
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Here, K, and A are as in (7) and A appears raised to the power N since this is the 
appropriate number of embeddings of K(3,3) in the original lattice. The quantity 
Z',(K,) is the partition function of a triangular Ising lattice of N sites and interaction 
parameter K,. Since this is well known (Green and Hurst 1964, Temperley 1972, 
Baxter 1982), (7) and (8) provide an exact solution of our non-planar lattice. 

Interest centres on the variation of the properties of the lattice in figure 1 with 
temperature. Now J1 and Jz are constant. Let r denote the ratio J 2 / J I .  (The excluded 
case J1 = 0 is trivial and can be dealt with directly.) This allows (7) and (8) to be used, 
in practice, with K1 = K and K2 = rK and the dependence on K (which is a dimension- 
less inverse temperature) to be studied. Since J1 and J2 correspond to first and second 
neighbour interactions, attention here will be restricted to the interval 0 d r S 1. (The 
discussion of the complexities of competing ferromagnetic and antiferromagnetic 
interactions is inappropriate in this first account and will be left to another occasion.) 

An issue of particular interest is the location of the critical point. For fixed values 
of r in the interval considered, (7) yields a one-one correspondence between K and 
K,. Hence the non-planar lattice has a unique critical point K, inherited from the 
triangular lattice. The critical point of the triangular lattice occurs at K, = In 3 (Baxter 
1982). Hence K, is the value of K which satisfies 

cosh3[(2 + r)K]/{cosh[(2 - r)K] cosh' rK} = 3. (9) 
For the extreme values of r considered here, (9) yields 

cosh 2Kc = J3 or K,= 0.573 1079. .  . ( r  = 0) 

cosh 2K, = 4(1+ 31'3) or K, = 0.326 6682 . , , ( r =  1).  (10) 

Clearly, r = 0 corresponds to a decorated triangular lattice (Syozi 1951, Naya 1954), 
which provides a check on our results, whilst r = 1 corresponds to the case in which 
the first and second neighbour interactions in figure 1 are equal. For other values of 
r, (9) can be solved numerically. Results obtained in this way are presented in figure 
3. The value of K, decreases as r increases which one might expect on general grounds 
(Griffiths 1972) since K,' is a dimensionless critical temperature. 

Another issue of interest is the nature of the singularity at the critical point. From 
(8) it follows that the free energy per spin of the non-planar lattice 

(11)  F(K1, Kz) = -bkT In A+&,(K,), 

1 0.80 

0 0 40 0 80 
r 

Figure 3. The critical point K, for various interaction ratios r. 
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where Ft is the free energy per spin of the corresponding triangular lattice and the 
notation is standard. Now In cosh x is an analytic function of x. (It is, of course, 
essentially the free energy of a single king bond at dimensionless inverse temperature 
x.) Thus, with K1 = K and KZ = rK, one finds that K, and In A are both analytic 
functions of K. This means that F inherits its singular behaviour directly from F,. 
Moreover, one can show directly that, at least for the values of r which concern us, 

K t = a l n 3 + A ( K - K , ) + .  . , (12) 
with A non-zero. (The correspondence between K and K, is one-one.) It thus follows 
rigorously that, leaving aside amplitudes, our non-planar lattice has the same ‘critical 
behaviour’ (and critical exponents a and a‘) as the triangular lattice. This is, of course, 
consistent with what one would expect from universality. 

The analysis presented in this article can be extended to the case in which the 
spins 4, 5 and 6 in figure 2 are allowed to interact directly in pairs. The appropriate 
embeddings of K ( 3 , 3 )  in figure 1 can then be replaced, at the cost of complications 
which are best avoided here, by embeddings of this new graph. 
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